Эксплуатация Docker
Инструкция Docker
Контейнеризация является отличной альтернативой аппаратной виртуализации. Все процессы в ней протекают на уровне операционной системы, что позволяет существенно экономить ресурсы и увеличивать эффективность работы с приложениями. Одним из наиболее популярных инструментов для программной виртуализации является Docker — автоматизированное средство управления виртуальными контейнерами. Он решает множество задач, связанных с созданием контейнеров, размещением в них приложений, управлением процессами, а также тестированием ПО и его отдельных компонентов. Что такое Docker и как его следует применять для веб-разработки, описано в этой статье.
Что такое Docker
Docker (Докер) — программное обеспечение с открытым исходным кодом, применяемое для разработки, тестирования, доставки и запуска веб-приложений в средах с поддержкой контейнеризации. Он нужен для более эффективного использование системы и ресурсов, быстрого развертывания готовых программных продуктов, а также для их масштабирования и переноса в другие среды с гарантированным сохранением стабильной работы.
Разработка Docker была начата в 2008 году, а в 2013 году он был опубликован как свободно распространяемое ПО под лицензией Apache 2.0. В качестве тестового приложения Docker был включен в дистрибутив Red Hat Enterprise Linux 6.5. В 2017 году была выпущена коммерческая версия Docker с расширенными возможностями. Docker работает в Linux, ядро которых поддерживает cgroups, а также изоляцию пространства имен. Для инсталляции и использования на платформах, отличных от Linux, существуют специальные утилиты Kitematic или Docker Machine. Основной принцип работы Docker — контейнеризация приложений. Этот тип виртуализации позволяет упаковывать программное обеспечение по изолированным средам — контейнерам. Каждый из этих виртуальных блоков содержит все нужные элементы для работы приложения. Это дает возможность одновременного запуска большого количества контейнеров на одном хосте.
Docker-контейнеры работают в разных средах: локальном центре обработки информации, облаке, персональных компьютерах и т. д.
Преимущества использования Docker
- Минимальное потребление ресурсов — контейнеры не виртуализируют всю операционную систему (ОС), а используют ядро хоста и изолируют программу на уровне процесса. Последний потребляет намного меньше ресурсов локального компьютера, чем виртуальная машина.
- Скоростное развертывание — вспомогательные компоненты можно не устанавливать, а использовать уже готовые docker-образы (шаблоны). Например, не имеет смысла постоянно устанавливать и настраивать Linux Ubuntu. Достаточно 1 раз ее инсталлировать, создать образ и постоянно использовать, лишь обновляя версию при необходимости.
- Удобное скрытие процессов — для каждого контейнера можно использовать разные методы обработки данных, скрывая фоновые процессы.
- Работа с небезопасным кодом — технология изоляции контейнеров позволяет запускать любой код без вреда для ОС.
- Простое масштабирование — любой проект можно расширить, внедрив новые контейнеры.
- Удобный запуск — приложение, находящееся внутри контейнера, можно запустить на любом docker-хосте.
- Оптимизация файловой системы — образ состоит из слоев, которые позволяют очень эффективно использовать файловую систему.
Компоненты Docker
Для начинающих разработчиков необходимо знать как работает Docker, его основные компоненты и связь между ними.
- Docker-демон (Docker-daemon) — сервер контейнеров, входящий в состав программных средств Docker. Демон управляет Docker-объектами (сети, хранилища, образы и контейнеры). Демон также может связываться с другими демонами для управления сервисами Docker.
- Docker-клиент (Docker-client / CLI) — интерфейс взаимодействия пользователя с Docker-демоном. Клиент и Демон — важнейшие компоненты «движка»
- Докера (Docker Engine). Клиент Docker может взаимодействовать с несколькими демонами.
- Docker-образ (Docker-image) — файл, включающий зависимости, сведения, конфигурацию для дальнейшего развертывания и инициализации контейнера.
- Docker-файл (Docker-file) — описание правил по сборке образа, в котором первая строка указывает на базовый образ. Последующие команды выполняют копирование файлов и установку программ для создания определенной среды для разработки.
- Docker-контейнер (Docker-container) — это легкий, автономный исполняемый пакет программного обеспечения, который включает в себя все необходимое для запуска приложения: код, среду выполнения, системные инструменты, системные библиотеки и настройки.
- Том (Volume) — эмуляция файловой системы для осуществления операций чтения и записи. Она создается автоматически с контейнером, поскольку некоторые приложения осуществляют сохранение данных.
- Реестр (Docker-registry) — зарезервированный сервер, используемый для хранения docker-образов. Примеры реестров:
- Центр Docker — реестр, используемый для загрузки docker-image. Он обеспечивает их размещение и интеграцию с GitHub и Bitbucket.
- Контейнеры Azure — предназначен для работы с образами и их компонентами в директории Azure (Azure Active Directory).
- Доверенный реестр Docker или DTR — служба docker-реестра для инсталляции на локальном компьютере или сети компании.
- Docker-хаб (Docker-hub) или хранилище данных — репозиторий, предназначенный для хранения образов с различным программным обеспечением. Наличие готовых элементов влияет на скорость разработки.
- Docker-хост (Docker-host) — машинная среда для запуска контейнеров с программным обеспечением.
- Docker-сети (Docker-networks) — применяются для организации сетевого интерфейса между приложениями, развернутыми в контейнерах.
Что такое Docker Engine
Docker Engine («Движок» Docker) — ядро механизма Докера. «Движок» отвечает за функционирование и обеспечение связи между основными Docker-объектами (реестром, образами и контейнерами).
Элементы Docker Engine
- Сервер выполняет инициализацию демона (фоновой программы), который применяется для управления и модификации контейнеров, образов и томов.
- REST API — механизм, отвечающий за организацию взаимодействия Докер-клиента и Докер-демона.
- Клиент — позволяет пользователю взаимодействовать с сервером при помощи команд, набираемых в интерфейсе (CLI).
Как работает Docker
Работа Docker основана на принципах клиент-серверной архитектуры, которая основана на взаимодействии клиента с веб-сервером (хостом). Первый отправляет запросы на получение данных, а второй их предоставляет.
Схема работы
- Пользователь отдает команду с помощью клиентского интерфейса Docker-демону, развернутому на Docker-хосте. Например, скачать готовый образ из реестра (хранилища Docker-образов) с помощью команды docker pull. Взаимодействие между клиентом и демоном обеспечивает REST API. Демон может использовать публичный (Docker Hub) или частный реестры.
- Исходя из команды, заданной клиентом, демон выполняет различные операции с образами на основе инструкций, прописанных в файле Dockerfile. Например, производит их автоматическую сборку с помощью команды docker build.
- Работа образа в контейнере. Например, запуск docker-image, посредством команды docker run или удаление контейнера через команду docker kill.
Как работают образы
Docker-image — шаблон только для чтения (read-only) с набором некоторых инструкций, предназначенных для создания контейнера. Он состоит из слоев, которые Docker комбинирует в один образ при помощи вспомогательной файловой системы UnionFS. Так решается проблема нерационального использования дисковой памяти. Параметры образа определяются в Docker-file. Для многократного применения Docker-image следует пользоваться реестром образов или Докер-реестром (Docker-registry), позволяющим закачивать готовые образы с внешнего репозитория сервиса и хранить их в реестре Докер-хоста. Рекомендуемый вариант — официальный реестр компании Docker Trusted Registry (DTR).
Если требуется файл, то скачиваться будут только нужные слои. Например, разработчик решил доработать программное обеспечение и модифицировать образ, изменив несколько файлов. После загрузки на сервер будут отправлены слои, содержащие только модифицированные данные.
Как работают контейнеры
Каждый контейнер строится на основе Docker-образов. Контейнеры запускаются напрямую из ядра операционной системы Linux. Благодаря этому, они потребляют гораздо меньше ресурсов, чем при аппаратной виртуализации.
Изоляция рабочей среды осуществляется при помощи технологии namespace. Для каждого изолированного пространства (контейнера) создается уникальное пространство имен, которое и обеспечивает к нему доступ. Любой процесс, выполняемый внутри контейнера, ограничивается namespace.
В ОС Linux посредством Docker Engine используется немного другая технология — контрольные группы (cgroups). При этом приложение ограничивается некоторым набором ресурсов. Сgroups осуществляют обмен доступных аппаратных ресурсов с контейнерами, на которые дополнительно устанавливаются необходимые ограничения (использование памяти, прав доступа к другому ресурсу и т. д.).
Движок Docker объединяет пространство имен (namespace), контрольные группы (cgroups) и файловую систему (UnionFS) в формат контейнера. В будущем планируется поддержка других форматов посредством интеграции технологий BSD Jails или Solaris Zones.
Что происходит при запуске контейнера
- Происходит запуск образа (Docker-image). Docker Engine проверяет существование образа. Если образ уже существует локально, Docker использует его для нового контейнера. При его отсутствии выполняется скачивание с Docker Hub.
- Создание контейнера из образа.
- Разметка файловой системы и добавление слоя для записи.
- Создание сетевого интерфейса.
- Поиск и присвоение IP-адреса.
- Запуск указанного процесса.
- Захват ввода/вывода приложения.
Установка и запуск сервиса docker
# dnf install docker docker-compose -y # systemctl start docker # systemctl enable docker
Основы Docker, примеры использования
Образы Docker
Вспомните о том, что контейнер Docker — это образ Docker, вызванный к жизни. Это — самодостаточная операционная система, в которой имеется только самое необходимое и код приложения.
Образы Docker являются результатом процесса их сборки, а контейнеры Docker — это выполняющиеся образы. В самом сердце Docker находятся файлы Dockerfile. Подобные файлы сообщают Docker о том, как собирать образы, на основе которых создаются контейнеры.
Каждому образу Docker соответствует файл, который называется Dockerfile. Его имя записывается именно так — без расширения. При запуске команды docker build для создания нового образа подразумевается, что Dockerfile находится в текущей рабочей директории. Если этот файл находится в каком-то другом месте, его расположение можно указать с использованием флага -f.
Контейнеры, как мы выяснили в первом материале этой серии, состоят из слоёв. Каждый слой, кроме последнего, находящегося поверх всех остальных, предназначен только для чтения. Dockerfile сообщает системе Docker о том, какие слои и в каком порядке надо добавить в образ.
Каждый слой, на самом деле, это всего лишь файл, который описывает изменение состояния образа в сравнении с тем состоянием, в котором он пребывал после добавления предыдущего слоя. В Unix, кстати, практически всё что угодно — это файл.
Базовый образ — это то, что является исходным слоем (или слоями) создаваемого образа. Базовый образ ещё называют родительским образом.
Базовый образ — это то, с чего начинается образ Docker
Когда образ загружается из удалённого репозитория на локальный компьютер, то физически скачиваются лишь слои, которых на этом компьютере нет. Docker стремится экономить пространство и время путём повторного использования существующих слоёв.
Файлы Dockerfile
В файлах Dockerfile содержатся инструкции по созданию образа. С них, набранных заглавными буквами, начинаются строки этого файла. После инструкций идут их аргументы. Инструкции, при сборке образа, обрабатываются сверху вниз. Вот как это выглядит:
FROM ubuntu:18.04 COPY . /app
Слои в итоговом образе создают только инструкции FROM, RUN, COPY, и ADD. Другие инструкции что-то настраивают, описывают метаданные, или сообщают Docker о том, что во время выполнения контейнера нужно что-то сделать, например — открыть какой-то порт или выполнить какую-то команду.
Здесь мы исходим из предположения, в соответствии с которым используется образ Docker, основанный на Unix-подобной ОС. Конечно, тут можно воспользоваться и образом, основанным на Windows, но использование Windows — это менее распространённая практика, работать с такими образами сложнее. В результате, если у вас есть такая возможность, пользуйтесь Unix.
Для начала приведём список инструкций Dockerfile с краткими комментариями.
Дюжина инструкций Dockerfile
- FROM — задаёт базовый (родительский) образ.
- LABEL — описывает метаданные. Например — сведения о том, кто создал и поддерживает образ.
- ENV — устанавливает постоянные переменные среды.
- RUN — выполняет команду и создаёт слой образа. Используется для установки в контейнер пакетов.
- COPY — копирует в контейнер файлы и папки.
- ADD — копирует файлы и папки в контейнер, может распаковывать локальные .tar-файлы.
- CMD — описывает команду с аргументами, которую нужно выполнить когда контейнер будет запущен. Аргументы могут быть переопределены при запуске контейнера. В файле может присутствовать лишь одна инструкция CMD.
- WORKDIR — задаёт рабочую директорию для следующей инструкции.
- ARG — задаёт переменные для передачи Docker во время сборки образа.
- ENTRYPOINT — предоставляет команду с аргументами для вызова во время выполнения контейнера. Аргументы не переопределяются.
- EXPOSE — указывает на необходимость открыть порт.
- VOLUME — создаёт точку монтирования для работы с постоянным хранилищем.
Теперь поговорим об этих инструкциях.
Простой Dockerfile
Dockerfile может быть чрезвычайно простым и коротким. Например — таким:
FROM rosalab/rosa:2019.1
Инструкция FROM
Файл Dockerfile должен начинаться с инструкции FROM, или с инструкции ARG, за которой идёт инструкция FROM.
Ключевое слово FROM сообщает Docker о том, чтобы при сборке образа использовался бы базовый образ, который соответствует предоставленному имени и тегу. Базовый образ, кроме того, ещё называют родительским образом.
В этом примере базовый образ хранится в репозитории ubuntu. Ubuntu — это название официального репозитория Docker, предоставляющего базовую версию популярной ОС семейства Linux, которая называется Ubuntu.
Обратите внимание на то, что рассматриваемый Dockerfile включает в себя тег 18.04, уточняющий то, какой именно базовый образ нам нужен. Именно этот образ и будет загружен при сборке нашего образа. Если тег в инструкцию не включён, тогда Docker исходит из предположения о том, что требуется самый свежий образ из репозитория. Для того чтобы яснее выразить свои намерения, автору Dockerfile рекомендуется указывать то, какой именно образ ему нужен.
Когда вышеописанный Dockerfile используется на локальной машине для сборки образа в первый раз, Docker загрузит слои, определяемые образом ubuntu. Их можно представить наложенными друг на друга. Каждый следующий слой представляет собой файл, описывающий отличия образа в сравнении с тем его состоянием, в котором он был после добавления в него предыдущего слоя.
При создании контейнера слой, в который можно вносить изменения, добавляется поверх всех остальных слоёв. Данные, находящиеся в остальных слоях, можно только читать.
Docker, ради эффективности, использует стратегию копирования при записи. Если слой в образе существует на предыдущем уровне и какому-то слою нужно произвести чтение данных из него, Docker использует существующий файл. При этом ничего загружать не нужно.
Когда образ выполняется, если слой нужно модифицировать средствами контейнера, то соответствующий файл копируется в самый верхний, изменяемый слой. Для того чтобы узнать подробности о стратегии копирования при записи, взгляните на этот материал из документации Docker.
Продолжим рассмотрение инструкций, которые используются в Dockerfile, приведя пример такого файла с более сложной структурой.
Более сложный Dockerfile
Хотя файл Dockerfile, который мы только что рассмотрели, получился аккуратным и понятным, он устроен слишком просто, в нём используется всего одна инструкция. Кроме того, там нет инструкций, вызываемых во время выполнения контейнера. Взглянем на ещё один файл, который собирает маленький образ. В нём имеются механизмы, определяющие команды, вызываемые во время выполнения контейнера.
FROM rosalab/rosa:2019.1 LABEL maintainer="n.pekonkin@rosalinux.ru" ENV ADMIN="pekonkin" RUN dnf update && dnf install ntp COPY . ./app ADD https://raw.githubusercontent.com/discdiver/pachy-vid/master/sample_vids/vid1.mp4 \ /my_app_directory RUN ["mkdir", "/a_directory"] CMD ["python", "./my_script.py"]
Возможно, на первый взгляд этот файл может показаться довольно сложным. Поэтому давайте с ним разберёмся.
Базой этого образа является официальный образ rosalab/rosa:2019.1 Проанализировав код можно увидеть, что данный базовый образ включает в себя Linux, rosalab/rosa:2019.1, и, по большому счёту, этим его состав и ограничивается.
Инструкция LABEL
Инструкция LABEL (метка) позволяет добавлять в образ метаданные. В случае с рассматриваемым сейчас файлом, она включает в себя контактные сведения создателя образа. Объявление меток не замедляет процесс сборки образа и не увеличивает его размер. Они лишь содержат в себе полезную информацию об образе Docker, поэтому их рекомендуется включать в файл. Подробности о работе с метаданными в Dockerfile можно прочитать здесь.
Инструкция ENV
Инструкция ENV позволяет задавать постоянные переменные среды, которые будут доступны в контейнере во время его выполнения. В предыдущем примере после создания контейнера можно пользоваться переменной ADMIN.
Инструкция ENV хорошо подходит для задания констант. Если вы используете некое значение в Dockerfile несколько раз, скажем, при описании команд, выполняющихся в контейнере, и подозреваете, что, возможно, вам когда-нибудь придётся сменить его на другое, его имеет смысл записать в подобную константу.
Надо отметить, что в файлах Dockerfile часто существуют разные способы решения одних и тех же задач. Что именно использовать — это вопрос, на решение которого влияет стремление к соблюдению принятых в среде Docker методов работы, к обеспечению прозрачности решения и его высокой производительности. Например, инструкции RUN, CMD и ENTRYPOINT служат разным целям, но все они используются для выполнения команд.
Инструкция RUN
Инструкция RUN позволяет создать слой во время сборки образа. После её выполнения в образ добавляется новый слой, его состояние фиксируется. Инструкция RUN часто используется для установки в образы дополнительных пакетов. В предыдущем примере инструкция RUN dnf update && dnf install ntp сообщает Docker о том, что системе нужно обновить пакеты из базового образа. Вслед за этими двумя командами идёт команда && dnf install ntp, указывающая на то, что в образ нужно установить ntp.
Инструкция RUN и схожие с ней инструкции — такие, как CMD и ENTRYPOINT, могут быть использованы либо в exec-форме, либо в shell-форме. Exec-форма использует синтаксис, напоминающий описание JSON-массива. Например, это может выглядеть так: RUN ["my_executable", "my_first_param1", "my_second_param2"].
В предыдущем примере мы использовали shell-форму инструкции RUN в таком виде: RUN dnf update && dnf install ntp .
Позже в нашем Dockerfile использована exec-форма инструкции RUN, в виде RUN ["mkdir", "/a_directory"] для создания директории. При этом, используя инструкцию в такой форме, нужно помнить о необходимости оформления строк с помощью двойных кавычек, как это принято в формате JSON.